Dietary zinc intakes in low income and developed countries

RS Gibson, M Gibbs, & EL Ferguson

Department of Human Nutrition, University of Otago, New Zealand

Outline

- Steps for assessing "usual dietary Zn intakes"
- How to determine the prevalence of inadequate and potentially excessive intakes of Zn
- Using these methods to assess inadequate and excessive intakes of Zn for:
 - Infants & young children
 - older children aged 4 to 14 years
 - pregnant women
- Factors associated with inadequate & excessive Zn intakes
- Conclusions

Steps to assess the prevalence of inadequate or excessive Zn intakes

- 1. Select sample representative of the study population
- 2. Measure food intake: using appropriate method & design
- 3. Convert foods to nutrients
- 4. Determine distribution of `usual' zinc intakes via PC-SIDE
- 5. Evaluate dietary adequacy via cutpoint method

Apply appropriate EAR for risk of inadequate intakes

Apply appropriate UL for risk of excessive intakes

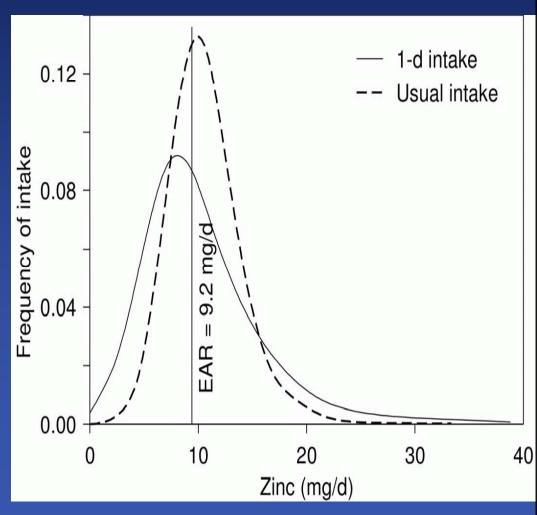
See IZINCG Technical Brief No. 3

2: Measure food intake using design appropriate for study objective

- Level 1: Average intake of a group
 - Single recall/record per person
- Level 2: Proportion of population 'at risk' to inadequate or excessive intakes
 - Repeat recalls/ records (on non-consecutive days) on each individual
 - OR Repeat on sub-sample only (30-40) per stratum
- Level 3 or 4: 'Usual' intakes of individuals for ranking (level 3) or correlation (level 4)
 - Multiple recalls or records

3: Convert foods to nutrients

NB: Zn content of plant-based staples depends on soil Zn

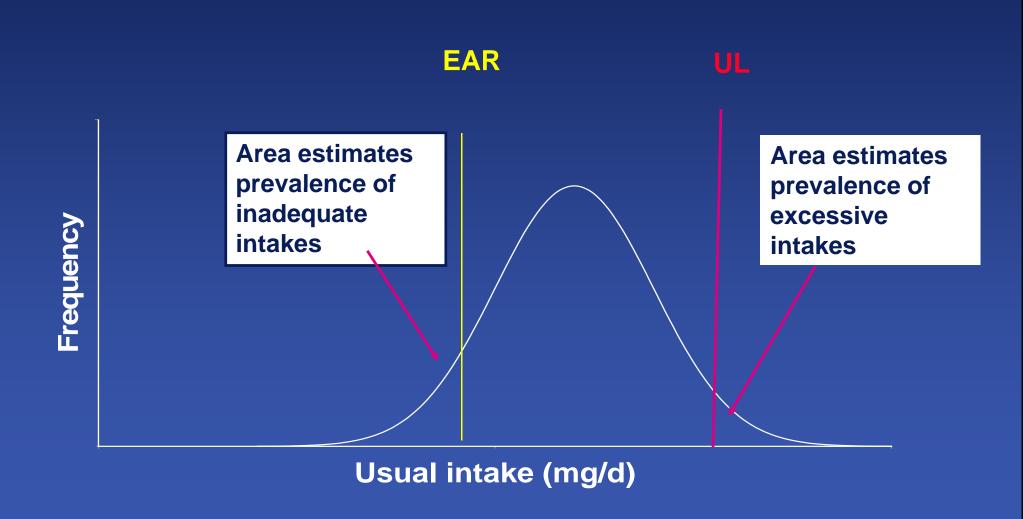

- Compile local food composition database with values for zinc and phytate
 - Analyze staple plant-based foods
 - Compile best estimates of Zn & phytate from other sources
- Useful resource: WorldFood Dietary Assessment System http://www.fao.org/ifoods/
- Calculate phytate: Zn molar ratio of diets to estimate bioavailability of Zn

NB there should be NO missing values in a food composition database

4. Adjusting distribution of observed to usual intakes via PC-SIDE

- Adjust 1-d intakes to usual intakes
 w. PC-SIDE
 - use internal or external within-person variance
- Select appropriate EAR & UL
- •Use cutpoint method to assess:
 - •% inadequate intakes
 - •% excessive intakes

Elevated risk >25% < EAR for Zn



See IZINCG Brief No. 3

Selecting appropriate EARs & ULs for Zn

- IZINCG (2004): provide EARs; NOAEL for Zn
 - -EAR for mixed/refined vegetarian diets; Phy:Zn: 4 to 18
 - OR unrefined cereal-based diets; Phy:Zn > 18
- WHO (2005): give EARs & UL's
 - EAR based on three levels of Zn bioavailability
- Country-specific EARs & ULs if available
 - -eg: IOM DRV's; UK DRI's etc
 - Bioavailability: based on habitual diets
 - NB: Bioavailability not taken into account for UL

5. Determining prevalence of inadequate & excessive intakes by cutpoint method

Study groups and objectives

Study groups

- Infants (7-12 mos) & children aged 1-4 y
- Older children
- Pregnant women

Objectives

- 1. To determine usual Zn intakes and phytate: zinc molar ratios of the diets
- 2. To assess the prevalence of inadequate and excessive intakes of Zn
- 3. To examine factors associated with inadequate and excessive intakes of Zn

Infants and children aged 1-4 y: methods

County (n)	Age	Description	Method
Mongolia* (179)	1 - 3 y	Ulaanbaatar + 4 provincial capitols: random sample	1- 24HR*
Cambodia* (177)	1- 3 y	Urban poor, Phnom Penh: convenience sample	1- 24HR*
Bangladesh (480)	2 - 4 y	2 Rural agricultural districts; random sample	1X WR; 1-24HR
NZ *(176) Non- Breast fed	1- 2.2 y	3 urban centers of S Island : random sample	3 x 1 WRs
Canada (128)	3 y	5 areas in Ontario: convenience sample	3 x 1 ER
USA (3908) Non-Breast fed	< 1; 1- 3 y	CSFII Nation-wide survey Over sampling low-income	2 x 24HR

^{*}External within-person variance used

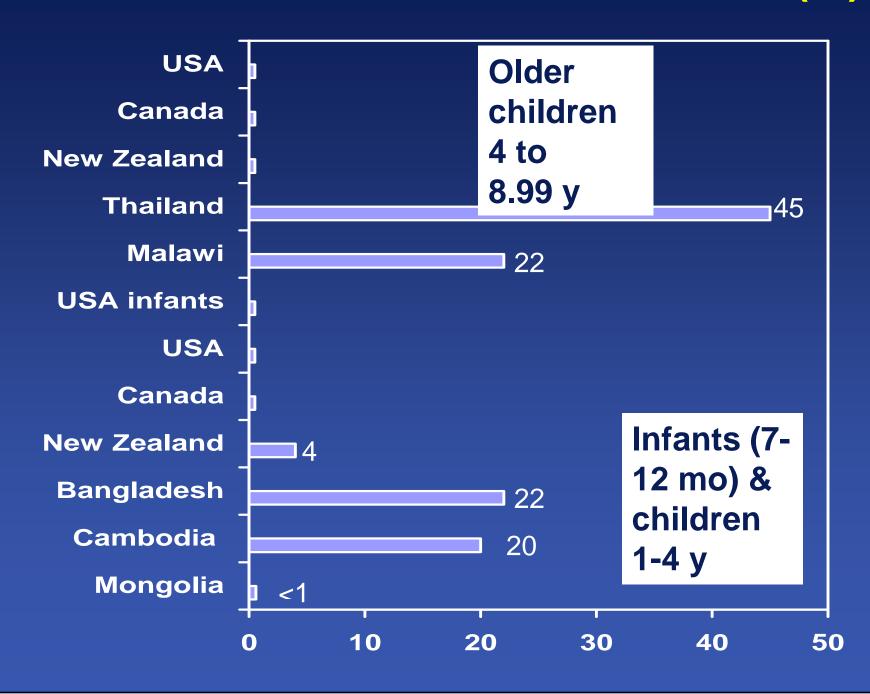
Intakes of infants & children 1-4 y: results

Country	Zn intake mg/d	Phy:Zn molar ratio	Cu intake mg/d	Zn:Cu* molar ratio
Mongolia 1-3y	4.9 ± 0.19	4 ± 3	0.48 ± 0.43	12.0 ± 4.9
Cambodia 1-3y	2.9 <u>+</u> 1.6	6 ± 3	0.66 ± 0.40	5.0 ± 3.4
Bangladesh 2- 4y	2.5 (2.1, 2.9)	11	-	-
NZ S Island 1-2y	4.8 ± 1.5	-	1.68 ± 0.51	10.2 ± 4.5
Canada 3y	6.8 _± 0.3	-	-	-
USA 1-3 y	7.6 ± 3.3	5 ± 3	0.71 ± 0.29	11.0 ± 4.0
USA < 1 y	6.6 ± 3.3	3 ± 2	0.67 ± 0.21	9.8 ± 2.5

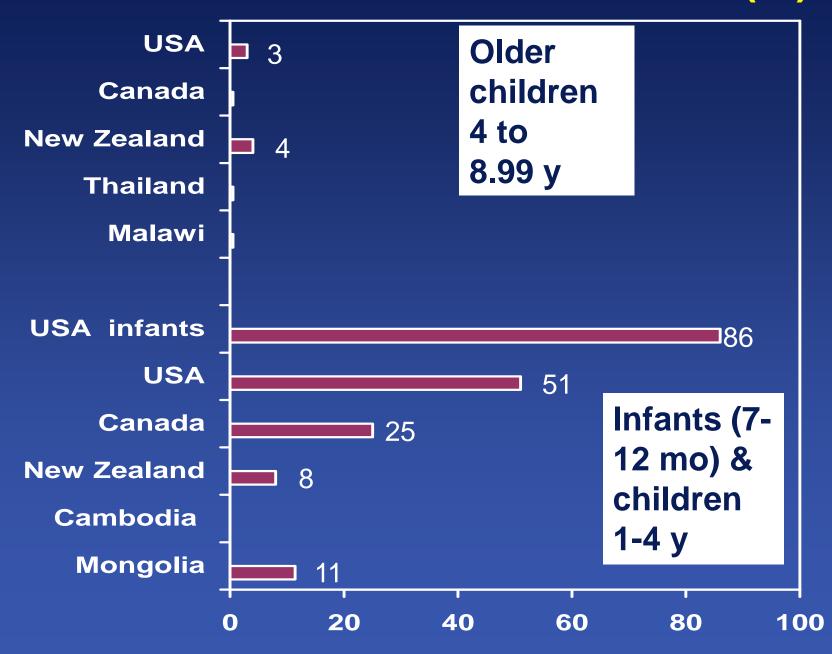
^{*}Zn:Cu close to < 10:1 = ratios of EARs for Zn & Cu except Mongolia

Older children - 4 to 14 y: methods

Country: (n)	Age	Description	Method
Malawi (321)	4-7 y	Subsistence HHs	2 x 24 HR
Canada (126)	4-5 y	Ontario; 5 areas; Convenience	3 x 1 ER
USA (2668)	4-5 y	CSFII nation-wide survey Over sampling low-income	2 x 24 HR
NZ (671) (908)	5-9 y 9-14 y	National survey: Over sampling of Maori + Pacific	1 x 24 HR + repeats
NE Thailand (228)	5-13 y	10 Low SES schools	1 x 24 HR*


^{*} External within-subject variance used

Intakes of older children: results


Country	Zn intake	Phy:Zn	Cu intake	Zn:Cu
	mg/d	Molar ratio	mg/d	Molar ratio
Malawi 4-7y	6.7 ± 3.8	21 ± 12	-	-
Canada 4-5y	7.0 ± 0.4	-	-	-
USA 4-5y	9.1 ± 3.7	6 ± 3	0.85 ± 0.34	10.9 ± 3.8
NZ S Island 5-9y	8.7	-	-	
NZ S Island 9-14y	10.0	-	-	
NE Thailand 5-8y	4.1	<1	0.96 ± 0.42	5.4 ± 1.8
9-13y	4.4		1.01 ± 0.46	5.2 ± 2.1

Zn:Cu close to < 10:1 = ratios of EARs for Zn & Cu

Prevalence of Zn intakes below EAR (%)

Prevalence of Zn intakes above UL (%)

Zn intakes of pregnant women: methods

Country: (n)	Age	Description	Method
Malawi (141)	14-45y	Subsistence farming HHs	2 x 24HR*
Ethiopia (99)	27.8 ± 4.6	Subsistence farming HHS	1 WR + repeats
Egypt (50)	17-36 y	Rural village	2 X WR per mo for 6 mo
USA (104)	24.4 ± 5.3	Low income of Mexican descent	1 X 24HR at 20 wk gestation
USA (244)	22.8 ± 5.4	Low income African- American	FFQ

Usual Zn intakes & Phy:Zn molar ratios of diets of pregnant women

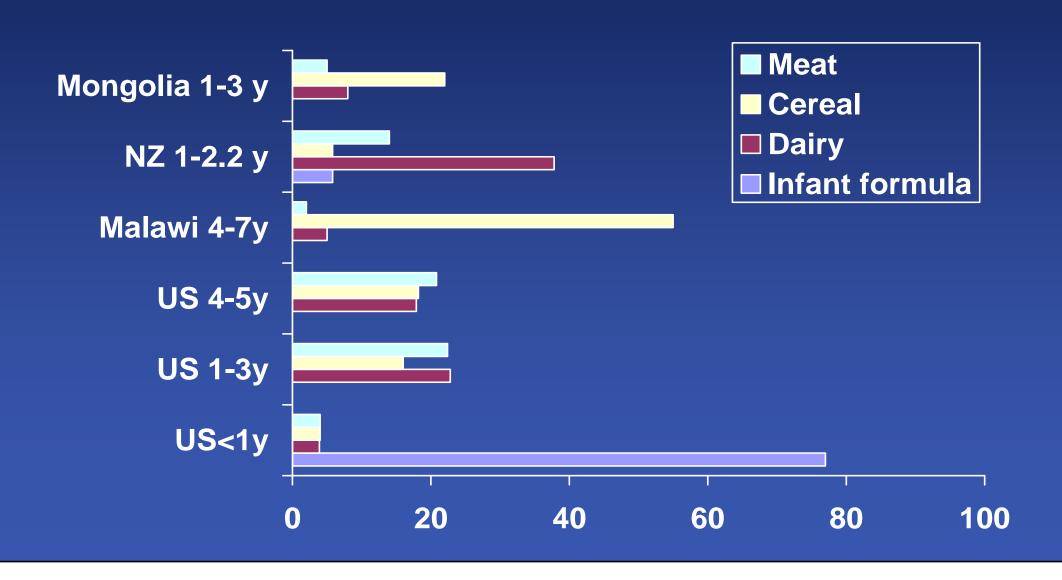
Country	Zn intake mg/d	Phy:Zn molar ratio	% with intakes < EAR	% with intakes > UL
Malawi	9.0	17	33	0
Ethiopia	5.7**	19	99	0
Egypt	9.4	15	36	?
US Mexican*	9.7	-	24	?
US African- American*	13.2 ± 5.6	-	6	?

^{**} Staples is Enset: very low in Zn; * Low income; IZiNCG EAR=10 mg; UL=40 mg

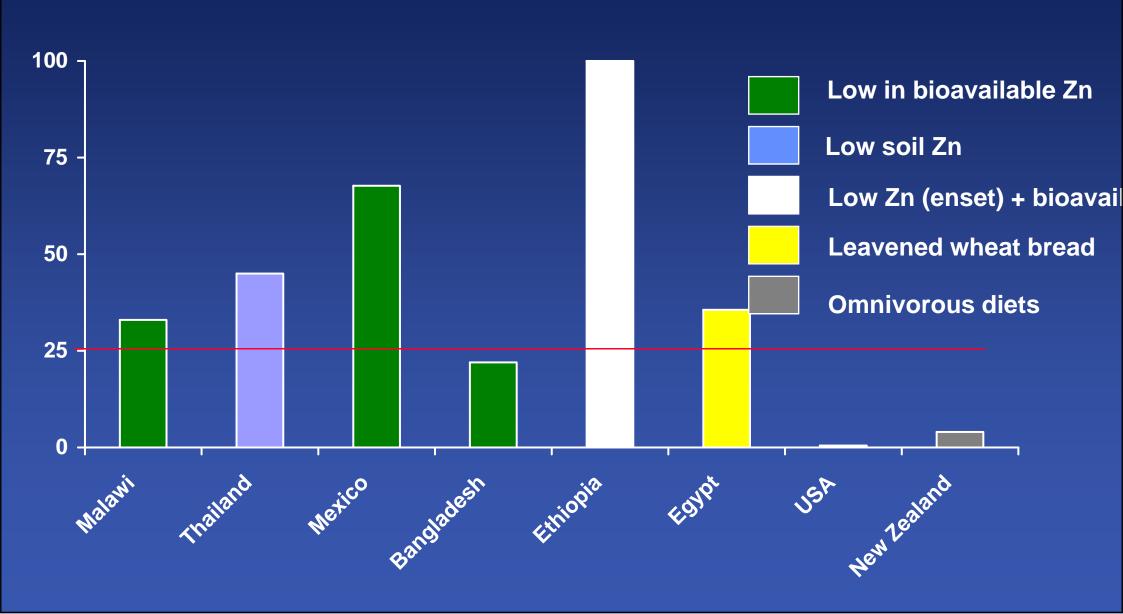
What are the factors associated with inadequate intakes of Zn?

1. Low zinc intakes

- diets based on roots & tubers: enset (Ethiopia), cassava, sweet potatoes, sago
- diets low in cellular animal foods: rich sources of Zn
- low energy intakes (Ethiopia, Thailand)


2. Poor bioavailability of zinc

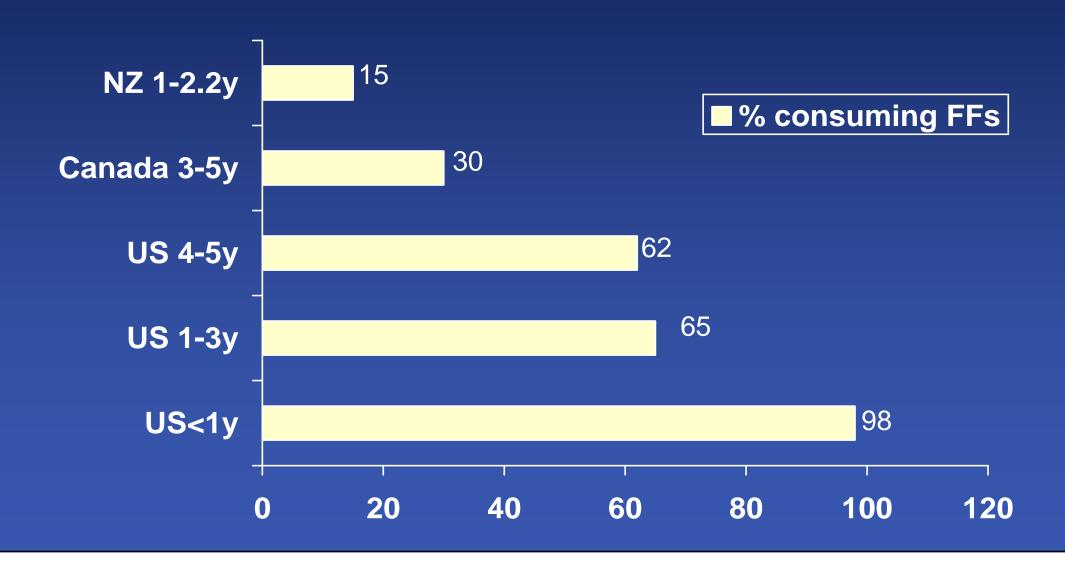
- unrefined cereals/legumes: high phytate diets (Malawi)
- low in cellular animal foods: rich in absorbable Zn


3. Environmental factors

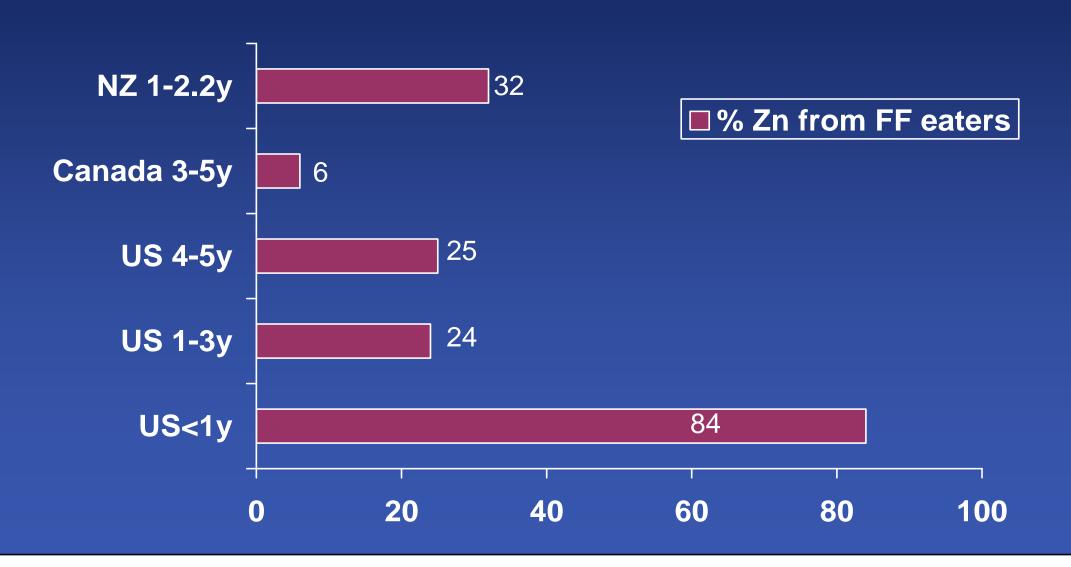
- low soil Zn: NE Thailand; Egypt; Iran; Turkey;
 Bangladesh; Pakistan
- low Zn content of staples grown on low Zn soils
 - » maize>beans>rice>sorghum

Major food sources of Zn (as %) for non breast fed children from Mongolia, NZ, Malawi, & US

Prevalence of inadequate intakes of Zn (as %) in relation to diet type


What are the factors associated with potentially excessive intakes of Zn?

1. Use of Zn-containing supplements in young children:


USA: 20%; Canada: 3%; NZ: 0%

- 2. Consumption of Zn-fortified foods
 - Zn-fortified formula (ZnFF)
 - USA: 84%; NZ: 15% 1-2.2 y
 - Ready-to-eat Zn-fortified breakfast cereals
 - USA: 78%; Canada: 24%; NZ: 0%
- 3. Higher protein intake: Canada
- 4. Higher energy intake: Canada; US; Mongolia

Percent of non-breastfed infants & young children from US, Canada, & NZ consuming Zn-fortified foods (FFs)

Percentage of total Zn intake from Zn-fortified foods among infants & young children consuming Zn fortified foods from US, Canada, & NZ

Conclusions

- Countries differ in their risk for inadequate & excessive intakes of zinc
- Infants & young children from low income countries are at high risk of Zn intakes below the EAR
- Infants & young children from North America are at high risk of Zn intakes above the UL
- Consumption of zinc-fortified foods in North America, notably zinc fortified formula & zincfortified breakfast cereals, are associated with high risk of zinc intakes > UL
- No evidence that there is a health risk for infants & young children with zinc intakes > UL
- Need to collect data on intakes & biomarkers of copper status and immune function in studies of children consuming zinc fortified foods

Thank you!

Please visit the IZiNCG web site: www.izincg.org